Если треугольник равносторонний то он равнобедренный. Признаки, составляющие элементы и свойства равнобедренного треугольника
Содержание
- 1 Если треугольник равносторонний то он равнобедренный. Признаки, составляющие элементы и свойства равнобедренного треугольника
Если треугольник равносторонний то он равнобедренный. Признаки, составляющие элементы и свойства равнобедренного треугольника
Равнобедренный треугольник — треугольнику которого две стороны равны.
Равные стороны называют боковыми сторонами, а третью сторону — основанием.
Свойства равнобедренного треугольника были известны с давних времен. Еще древние вавилоняне (II в. до н.э.) знали, что углы у основания равнобедренного треугольника равны. Любой треугольник можно разрезать на равнобедренные треугольники.
Свойства и признаки равнобедренного треугольника
Свойства равнобедренного треугольника:
1. У равнобедренного треугольника углы у основания равны (теорема).
2. Медиана, биссектриса и высота, проведенные к основанию, совпадают (теорема).
3. Медианы равнобедренного треугольника, проведенные к боковым сторонам, равны.
4. Высоты равнобедренного треугольника, проведенные к боковым сторонам, равны.
5. Биссектрисы равнобедренного треугольника, проведенные к боковым сторонам, равны.
Признаки равнобедренного треугольника:
Если у треугольника есть один из нижеуказанных признаков, то он равнобедренный:
— два угла равны,
— высота и медиана совпадают,
— высота и биссектриса совпадают,
— медиана и биссектриса совпадают,
— две медианы равны,
— две высоты равны,
— две биссектрисы равны.
ПРИМЕРЫ РЕШЕНИЯ
КЛЮЧЕВЫХ ЗАДАЧ:
Задача № 1. Дано: ΔABC — равносторонний, ΔADC — равнобедренный (AD=CD), AC — общая сторона, BC = 8 см, PADC > PABC в 1,5 раза. Найти: CD.
Задача № 2. Дано: ΔABC — равнобедренный, AB = BC, AD — медиана, AB + BD = 27 см, AC + CD = 21 см. Найти: AB, BC, AC.
Задача № 3. Дано: ΔABC — равнобедренный, AB = BC, ∠1 = 130°. Найти: ∠2.
Теоретический тест
с последующей самопроверкой
- Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение:
а) всегда верно;
б) может быть верно;
в) всегда неверно. - Если треугольник равносторонний, то:
а) он равнобедренный;
б) все его углы равны;
в) любая его высота является биссектрисой и медианой. - В каком треугольнике только одна его высота делит треугольник на два равных треугольника?
а) в любом;
б) в равнобедренном;
в) в равностороннем. - Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение:
а) всегда верно;
б) может быть верно;
в) всегда неверно. - Если треугольник равнобедренный, то:
а) он равносторонний;
б) любая его медиана является биссектрисой и высотой;
в) два его угла равны. - В каком треугольнике любая его высота делит треугольник на два равных треугольника?
а) в любом;
б) в равнобедренном;
в) в равностороннем. - Если в треугольнике два угла равны, то этот треугольник является:
а) равносторонним;
б) равнобедренным;
в) прямоугольным. - Если в треугольнике две стороны равны, то:
а) у него равны два угла;
б) у него все углы равны;
в) этот треугольник равносторонний.
- Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение: б) может быть верно.
- Если треугольник равносторонний, то: а) он равнобедренный; б) все его углы равны; в) любая его высота является биссектрисой и медианой.
- В каком треугольнике только одна его высота делит треугольник на два равных треугольника? б) в равнобедренном.
- Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение: а) всегда верно.
- Если треугольник равнобедренный, то: в) два его угла равны.
- В каком треугольнике любая его высота делит треугольник на два равных треугольника? в) в равностороннем.
- Если в треугольнике два угла равны, то этот треугольник является: б) равнобедренным.
- Если в треугольнике две стороны равны, то: а) у него равны два угла.
Вы смотрели конспект по теме «Равнобедренный треугольник + ЗАДАЧИ по теме». Выберите дальнейшие действия:
Признаки равнобедренного треугольника
Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.
- Если у треугольника два угла равны, то этот треугольник — равнобедренный.
- Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
- Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
- Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!
Свойство первое
В равнобедренном треугольнике углы при основании равны.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Дан равнобедренный ΔABC, в котором AB = AC. К его основанию проведена биссектриса AD.
Так как AD является биссектрисой, соответственно, угол ∠1 будет равен углу ∠2. Сторона AD – общая для ΔADB и ΔADC. Следовательно, они равны по первому признаку. Тогда верно утверждение, что угол ∠B равен углу ∠C.
Свойство второе
В равнобедренном треугольнике биссектриса, опущенная к основанию, является медианой и высотой.
Дан равнобедренный ΔABC, в котором AB = AC. К его основанию проведена биссектриса AD.
Так как AD является биссектрисой, соответственно, угол ∠1 будет равен углу ∠2. Сторона AD – общая для ΔADB и ΔADC. Тогда эти треугольники равны по первому признаку. Тогда BD = DC. Следовательно, AD – медиана.
Сумма углов треугольника равна 180°, то есть ∠A + ∠B + ∠C = 180°. Так как AD – биссектриса, то угол ∠A = 2*∠1.
В ΔACD ∠CDA + ∠1 + ∠2 = 180°, следовательно, ∠CDA = 90°.
Тогда AD – высота.
Свойство третье
В равнобедренном треугольнике медианы (соответственно, высоты и биссектрисы), проведенные из вершин при основании, равны.
Дан равнобедренный ΔABC, в котором AB = AC.
∠BAT = ∠BCM, так как AT и MC – биссектрисы равных углов. ∠B – общий для ΔABT и ΔCBM. Следовательно, ΔABT и ΔCBM равны по второму признаку. Тогда AT = CM.
Признаки равнобедренного треугольника
Признак 1. Если в треугольнике две стороны равны, то треугольник является равнобедренным.
Признак 1 следует из определения 1.
Признак 2. Если в треугольнике два угла равны, то треугольник является равнобедренным.
Доказательство признака 2 смотрите в статье Соотношения между сторонами и углами треугольника (Следствие 2. Признак равнобедренного треугольника).
Признак 3. Если в треугольнике высота проведенная к одной стороне совпадает с медианой проведенной к этой же стороне, то треугольник является равнобедренным.
Доказательство. Пусть в треугольнике ( small ABC ) ( small AH ) является высотой и медианой (Рис.4). Тогда ( small angle 3=angle4=90°, ) ( small CH=HB. ) Треугольники ( small AHC ) и ( small AHB ) равны по двум сторонам и углу между ними (первый признак равенства треугольников): ( small AH ) − общая сторона, ( small CH=HB, ) ( small angle 3=angle4. ) Следовательно ( small AB=AC. )
Признак 4. Если в треугольнике высота проведенная к одной стороне совпадает с биссектрисой проведенной к этой же стороне, то треугольник является равнобедренным.
Доказательство. Пусть в треугольнике ( small ABC ) ( small AH ) является высотой и биссектрисой (Рис.4). Тогда ( small angle 3=angle4=90°, ) ( small angle 1=angle2. ) Треугольники ( small AHC ) и ( small AHB ) равны по стороне и прилежащим двум углам (второй признак равенства треугольников): ( small AH ) − общая сторона, ( small angle 1=angle 2, ) ( small angle 3=angle4. ) Следовательно ( small AB=AC. )
![]() ![]() |
Признак 5. Если в треугольнике биссектриса проведенная к одной стороне совпадает с медианой проведенной к этой же стороне, то треугольник является равнобедренным.
Доказательство (Вариант 1). Пусть в треугольнике ( small ABC ) ( small AH ) является биссектрисой и медианой (Рис.5). Тогда
( small angle 1=angle2, ) ( small CH=HB. ) | (5) |
Применим теорему синусов для треугольника ( small AHC ):
( small frac |
(6) |
Применим теорему синусов для треугольника ( small AHB ):
( small frac |
(7) |
тогда, из (5), (6), (7) получим:
( small frac |
(8) |
Следовательно ( small sin angle C= sin angle B. ) Поскольку сумма всех углов треугольника равна 180°, то нам интересует синус углов от 0 до 180°. Учитывая это получим, что синусы углов равны в двух случаях: 1) ( small angle C= angle B, ) 2) ( small angle C= 180° — angle B. ) Поскольку сумма двух углов треугольника меньше 180°: ( small angle C + angle B Доказательство (Вариант 2). Пусть в треугольнике ( small ABC ) ( small AH ) является биссектрисой и медианой, т.е. ( small angle 1=angle 2, ) ( small CH=HB ) (Рис.6). На луче ( small AH ) отложим отрезок ( small HD ) так, чтобы ( small AH=HD. ) Соединим точки ( small C ) и ( small D. )
![]() |
Треугольники ( small AHB ) и ( small DHC ) равны по двум сторонам и углу между ними (первый признак равенства треугольников). Действительно: ( small AH=HD, ) ( small CH=HB, ) ( small angle 4=angle 5 ) (углы 4 и 5 вертикальные). Тогда ( small AB=CD, ) ( small angle 6=angle 2. ) Отсюда ( small angle 6=angle 1. ) Получили, что треугольник ( small CAD ) равнобедренный (признак 2). Тогда ( small AC=CD. ) Но ( small AB=CD ) и, следовательно ( small AB=AC. ) Получили, что треугольник ( small ABC ) равнобедренный.
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
- CD перпендикулярна AB => ∠ADC = ∠BDC = 90°
- AD = DB
- ∠ACD = ∠DCB = 30°
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
2 задачи на равнобедренный треугольник
Задача 1 (самая простая)
В треугольнике ( displaystyle ABC) стороны ( displaystyle AB) и ( displaystyle AC) равны, а ( displaystyle angle BAC=70<>^circ ).
Найти ( displaystyle angle ABC).
Решение
Что здесь основание? Конечно, ( displaystyle BC).
Вспоминаем, что если ( displaystyle AB=AC), то и ( displaystyle angle B=angle C).