Урок 3

Урок 3. Окружность в перспективе. Как нарисовать кружку и вазу

В этом уроке мы разберемся, как изображать объекты, в основе которых лежат окружности: чайник, вазу, бокал, кувшин, колонну, маяк. Сложность их изображения в пространстве заключается в том, что принцип равноудаленности точек окружности от центра срабатывает, только когда мы смотрим на плоскость прямо (то есть направление взгляда перпендикулярно ей). Например, мы видим круглый циферблат часов перед собой или чашку и блюдце, когда наклонились над ними. В других случаях (взгляд падает на плоскость под углом) мы видим искажение формы окружности, ее превращение в овал (эллипс).

Содержание:

Ненадолго вернемся к коробкам из прошлого урока. Только теперь рассмотрим кубическую форму. Обратите внимание, как квадраты плоскостей, уходящих вдаль, сплющиваются. Верхние и нижние грани превращаются в трапеции. И тем сильнее они сужаются по вертикальной оси, чем ближе находятся к уровню глаз (к линии горизонта).

То же самое происходит и с окружностями. Чем дальше от линии горизонта они находятся, тем больше они открываются (обратите внимание на верхние и нижние плоскости этих спилов). А на уровне глаз окружность сужается до линии. Мы видим лишь переднюю грань предмета.

Как выглядит круг в перспективе

Запомните: видимая круглая часть предмета, повернутого в перспективе, визуально становится эллипсом. Не сплющенным кругом, не овалом, не бубликом с разными половинками, а именно эллипсом.

Что такое эллипс, можете посмотреть в школьном курсе геометрии. Но для художника важно запомнить его главные черты – симметричность относительно двух перпендикулярных друг другу осей и скругляющиеся по радиусу края. То есть эллипс – абсолютно симметричная фигура.

Читать еще:  Как проходит облучение после удаления матки. Как проводится лучевая терапия после удаления матки с придатками. Лапароскопическое удаление матки

Есть такая история про разные половинки круга, который повернут под углом в перспективе. Ее рассказывают и в художественных школах и в интернет. Но ее часто истолковывают не верно, что приводит к заблуждению и путанице.

Например, круглая чашка, вид сверху.

Когда мы ее поворачиваем под углом, то сверху мы видим круг уже по-другому. И то, что мы видим, как раз и называется эллипсом.

Запомните раз и навсегда: как бы мы эту чашку не повернули, ее верхушка останется эллипсом. Он может стать шире, уже, но все равно останется эллипсом.

Если известна большая ось

Если известен размер большой оси овала, то само построение в разы упрощается.

Заданную ось нужно поделить на три равные части, как на фото:

Измерить расстояние О1 и О2 – это радиус. Из этих точек провести окружности радиусом О1О2, как на фото:

Пересечение окружностей назовем m и n.

Точки m и n с O1 и O2 соединяем, получая в итоге прямые, которые необходимо продлить до пересечения с окружностями. Точки 1, 2, 3, 4 в этом случае – точки сопряжения дуг.

Точки m, n считаем центрами и проводим из каждой радиус максимальный, который равен n2 и m3. Получаются дуги 12 и 34. Овал нарисован, полученный результат можно сравнить с этим изображением:

Ссылка на основную публикацию
Adblock
detector